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Summary

A mathematical model for a general multibody flexible sp0.cecraft is obtained. The generic

spacecraft considered consists of a flexible central body to which a number of flexible multibody

structures are attached. The coordinate systems used in the derivation allow effective decoupling

of the translational motion of the entire spacecraft from its rotational motion about its center of

mass. The derivation assumes that the deformations in the bodies are only due to elastic motions.

The dynamic model derived is a closed-form vector-matrix differential equation. The model

developed can be used for analysis and simulation of many realistic spacecraft configurations.

1 Introduction

A class of next-generation spacecraft is expected to inlude nonlinear, multibody, flexible space

systems. Some of the current spacecraft can also be catagorized under this class. Examples

of such systems are [1] : satellites with flexible appendages, such as solar arrays and antennas,

space-shuttle with remote manipulator system (RMS), and flexible space platforms with multiple

articulated payloads. Mathematical modeling of these systems is quite complex. This problem

has been addressed in the existing literature (e.g., see [2]); however, in this paper, a different

approach is taken to derive the equations of motion which yields compact, closed-form equations of

motion. The derivation uses modeling techniques similar to those used in tile robotics literature

(e.g., see [3], [4]). The formulation is relatively general and can be used for a large class of

spacecraft.

First, for tile sake of completeness, some of the mathematical aspects of modeling rotat-

ing systems are summarized in the section on mathematical preliminaries. Next, the kinematic

equations, i.e., the position, velocity, and acceleration relations, for a particle mass of the sys-

tem are obtained. Once the kinematic equations are derived, tile dynamics of the system can

be modeled by using various methods; for example , the Newtonian approach, the calculus of

variations approach, and the Lagrangian approach. The equations of motion derived using any

of these methods are equivalant; however, the Lagrange-Euler formulation is used here since it is

an energy-based approach (i.e, it uses scalar formulation) and is easy to work with compared to



Newtonianapproachwhich dealswith vectorquantities. It is assumedin the derivationthat the

bodiesdeformonly dueto the elastic motion. However,anyother deformationssuchasthermal

deformationscanbeeasily includedin the formulation with somemodificationsin the potential

energyfunction.

In deriving the kinematicequationsfor the chain of multiple flexible bodies,the coordinate

systemsbecomean important elementof the derivation. A largepart of kinematicsdealswith

the coordinatetransformationsusedto representthe position and orientation of the body. In

view of this, wewill beginwith a study of the operationsof translation and rotation, and the

transformationswhich areusedto representthesemotions.

2 Mathematical Preliminaries

2.1 Rotations

Consider a rigid body as shown in Figure 1, to which a body-axis system, i.e., a body-fixed

coordinate frame, (Xb, Yb, Zb), is attached. Let (Xo, Yo, Zo) represent some fixed reference frame

whose origin is concentric with the body axes system. Our aim is to relate the coordinates of

a point P on the body in the (Xb, Yb, Zb) frame to those in the (Xo, Yo, Zo) frame. Let ib,fl, kb

denote orthonormal basis vectors in the body frame and io,jo, ko denote the orthonormal basis

vectors in the fixed frame. Then, the position vector of point P, _p, in the body frame is given as

r--bp= rbxib nc rbyjb + rbz]¢b (1)

and in the fixed frame is given by

r_ = ro,:io + royjo + rozko (2)

Since _ and _ are representations of the same vector gp, the relation between the components

of Tp in two different systems can be obtained as follows.

Similarly,

rbz = ib . -brp = ib "_op (3)

rby = jb " _ = jb " _ (4)



and

rbz = ]gb --b = ]gb -:.o• rp • rp

Equations (3)-(5) can be rewritten in a compact form as

or, notationally,

[bx][ox1Tby _--- Rbo roy

_bz Foz

where

(5)

b---o=Rot p (6)

i6.io ib'jo i6"ko

Rbo= jb'io jb'jo fl'ko (7)

kb • i o ]gb " jo ]gb " ]go

Similarly, the coordinates of Tp in the fixed frame can be expressed in terms of the coordinates

in the body frame as

where

io . ib io . jb io . kb

R_= jo'ib jo'jb jo'kb

ko . ib ]co" jb ko . kb

Since dot products are commutative, from equations (7) and (9), we can see that

(9)

(lo)R_= Rbo_ = Rbo-1

and

Then,

b o b T b
RoR b =R_TR_=R o R o=I3 (12)

where /3 is the 3 x 3 identity matrix. The transformations, R_ and Rbo, are called 'orthogonal'

transformations. These transformations are also referred to as 'orthonormal' transformations



since all column vectors in the transformation matrix are unit vectors in addition to being

orthogonal. Thus, the transformationmatricescanbe usedto relate the representationsof the

samevector in two different coordinatereferenceframes. Note that the transformationsdo not

changethe vector itself but only its representation.Another important thing to be notedis that

the rowsof R_ are the direction cosines of io, jo, and ko, respectively, in the body coordinate

frallle.

Matrices Rbo and R_ can also be interpreted as rotation matrices wherein (ib,jb , kb) are or-

thonormal basis vectors in the final direction of the (io,jo, ko) axis system after rotations about

the selected coordinate axes. The properties of rotation matrices are developed in the next

section.

2.2 Basic Rotation Matrices

When the rotation matrix represents a change in orientation about any one of the principal

coordinates of the reference frame, X, Y, or Z, it is called as the 'basic' rotation matrix. So, if

a new coordinate system, say B(g, g,N), is obtained by rotation c_ of the old coordinate system

, say A(u, v, w), about X axis, then the basic rotation matrix associated with this rotation is

given by, R_ = Rx,_. Similarly, the basic rotation matrices associated with rotations,/3 about Y

axis and -7 about Z axis, are given by Rr, O and Rz,._, respectively. Referring to Figures (2a)-(2c),

the basic rotation matrices can be written as

Ry,/3 =

1 0 0

0 cosc_ -sinc_

0 sina coso_

cos/3 0 sin/3

0 1 0

-sinfl 0 cosfl

cos7 -sin2 0

sin?' cos'7 0

0 0 1

(13)

(14)

(15)



The reason these matrices are called basic rotation matrices is because any finite arbitrary ro-

tation can be achieved by a composition of these matrices. However, since the finite rotations

are not commutative, the order of multiplication of these matrices during composition is very

important.

2.3 Composite Rotations

As stated previously, any arbitrary finite rotation can be achieved by a composition of the basic

rotation matrices, i.e., by following a sequence of basic rotations. In obtaining the composite

rotation matrix there are three different possibilities. The successive rotations can take place

either about the prinicipal axes of the fixed reference frame, or it can take place about the

principal axes of the rotating frame itself, or a combination of both. The following procedure

can be followed to obtain a composite rotation matrix.

When the rotation occurs about any principal axis of a fixed reference frame, premultiply the

last resultant rotation matrix by the corresponding basic roation matrix and, when the rotation

occurs about any principal axis of rotating reference frame itself, postmultiply the last resultant

rotation matrix by corresponding basic roation matrix.

Let us suppose that the two axes systems, OXYZ (fixed) and oxyz (rotating), are initially

coincident. Then the rotation matrix will just be an identity matrix,/3. Now suppose that oxyz

undergoes the following sequence of rotations. It rotates about OX axis through an angle a and

then rotates through an angle ¢ about ox axis. The composite rotation matrix in this case will

then be given by

R = Rx,J3R_.,¢ = Rx,_R_:,¢ = Rx,(_+¢) = R_,(_+¢) (16)

1 0

R= 0 cosa

0 sinc_

0

COS(_

1 0 0

0 cos¢ -sine

0 sine cos¢

1

= 0

0

0 0

cos(a + ¢) -si,_(. + ¢)

_i_(_ + ¢) co_(_ + ¢)

(17)

2.4 Rotation About an Arbitrary Axis

In many cases, the rotations of the body-fixed coordinate system take place about an axis other

than the principal axes of the fixed frame or the rotating frame. In the case when the rotation



takesplaceabout an arbitrary axis, the rotation matrix canbeobtained asfollows. Referringto

Figure 3, let i_= {v,,vy,vz} T be the unit vector along the axis of rotation and g, be the angle

through which the rotation takes place. Now obtain the rotation matrix for following sequence

of operations. Rotate i7 about OX by angle a which will bring vector g in the XZ plane. Then

rotating about OY axis by -/3 will align g vector with OZ axis. Then rotate about OZ or g by

angle g, and then reverse the rotation order to bring vector g back to its original position. This

sequence of rotation will lead to the following composition of basic rotation matrices.

R = Rx,__RK_Rz,¢RK__Rx,_ (18)

Noting that,

_)y '0 z
cosa - (19)

sin_= v_ cos/3= _ + v_ (20)

the rotation matrix can be rewritten as [3]

R

t,_(1 - cos C,) + cos_

vxvy(1 - cos_ ) + vzsin_

v_v_(1 - cost/,) - vysim/,

vxvy(1 - cos_b) - v_sin¢

- co,V)+ co ¢

VyVz(1 -- cos_b ) + vxsin_b

v_v_(1 - cos¢) + vusint)

vyvz(1 -- cos¢ ) -- v_:sin¢

v_(1 -- coach) + cos¢

(21)

In mathematical notation, these 3 x 3 rotational matrices are said to belong to 5"0(3) space.

The notation 5"0(3) stands for Special Orthogonal group of order 3 [4].

2.5 Properties of Rotational Matrices

The rotational matrices have some special properties which play an important role in the math-

ematical modeling of the system. These properties are listed below.

1) As shown previously, R r = R -1, i.e., RR r = I3.

2) The columns of R represent the unit vectors along the principal axes of the rotated coordinate

frame with respect to the reference frame unit vectors.

3) Since R r = R -1 the rows of rotation matrix represent the unit vectors along principal axes of

reference frame with respect to rotating frame.



4) Any row (column) of rotation matrix is orthonormal to any other row (column). This is the

direct consequenceof properties1 and 2.

5) If g, b E 7¢3, where 7_a is 3-dimensional Euclidean space, then R(g x b) = R-5 x Rb where

symbol x denotes vector cross product. (Note that this equality is valid only for orthogonal

rotational matrices)

2.6 Skew-Symmetric Matrices and Cross Product Operator

A skew-symmetric matrix, S, has the property: sii = 0 and sij = -s j, for i 5¢ j. Then, an

immediate consequence of this property is given by: $ + S T = 0. These matrices play an

important role in the computation of vector-matrix operations involving vectors belonging to 7¢a

space and matrices belonging to T£O(3) space. To illustrate, consider a vector cross product g x

which can be written in terms of vector-matrix multiplication as S(g)b, where S(.) is referred as

the 'cross product operator matrix', and is given by

0

= az

--ay

--az ay

0 --a x

ax 0

(22)

This cross product operator matrix has some important properties which are discussed below.

For the sake of simplicity, we will use the following simplified notation in the remainder of the

paper.

S(.) = (=) (23)

2.7 Properties of Cross Product Operator Matrix

1) Using property (5) of rotational matrices and the definition of $(-), it can be shown [4] that

for any vector, g E -_3 and R C T¢O(3),

RS(_)R T = $(/N) (24)

2) If R_,o represents the rotation about an axis aligned with vector g by angle 0 then the derivative

7



of R with respect to 0 is given by [4]

dR ,o _ S(v)R o (25)
dO

3) As an obvious consequence of the cross product property, we obtain another property: _'(_1)_2 =

-S(g2)_1, where _1 and ix2 are 3-vectors.

3 Mathematical Modeling

The objective of this section is to derive the equations of motion for nonlinear, multibody, flexible,

spacecraft in the most general framework possible.

3.1 Modeling Considerations

The focus configuration of a generic spacecraft under consideration has a branched geometry with

a relatively large central body. The system under consideration can be schematically represented

by the configuration shown in Figure 4. It is assumed that all bodies in the system are flexible.

The deformations in the bodies are assumed to be due to elastic motions only; however, any

other deformations such as, due to thermal effects, can also be modeled if required. The system

model under consideration has cluster configuration. It consists of one central body attached

to various appendage-bodies to form a branch geometry. For the purpose of derivation the

following notations are used. Let each body be denoted by Bij where, the first subscript indicates

the branch the body belongs to and the second subscript indicates the body number in that

particular branch. Since the number and the locations of various bodies are arbitrary the system

configuration is highly general.

3.2 Coordinate Systems

Referring to Figure 5, .V_I, rl, Zl is the inertial coordinate system; Xcm, Y_m, Zcm is the coordinate

system with the origin fixed at the center of mass of the entire spacecraft and is aligned with

the inertial frame; Xc, Y_, Z_ is the coordinate frame attached to the central body with the origin

attached to the center of mass, and Xij, Yij, Zij represent the local coordinate system attached



to the ij-th body with the origin located at the point of connection between i(j - 1)-th body

and ij-th body. The motion of each local coordinate system origin, O/j, is defined with respect

to the previous local coordinate frame. In order to derive dynamical equations, it is necessary

to obtain expressions for the kinematic quantities, i.e., the position, velocity, and acceleration of

the spacecraft.

3.3 Kinematics of a Spacecraft

Consider a spacecraft with its instantaneous center of mass located at Ocm (Figure 5). Then,

the vector, _c,,_, determines the inertial position of the spacecraft. In order to decouple the

translational motion of the entire spacecraft from the rotational motion about its center of mass,

for the reasons that will be apparent later, the orientation of the frame Xcm, _m, Zcm is assumed

to be same as XI, YI, ZI, i.e. the rotation matrix, Rc_ , will be an identity matrix. The vector _cm

can be expressed in terms of orbital elements [2]. Vectors _c and _ represent displacement of the

center of mass of the central body due to rigid and elastic motions, respectively. Vector T_ then

represents the vector sum of these two vectors, i.e., _ = ac + p_. In addition to the translational

motion of the entire spacecraft, the spacecraft can undergo the rotational motion about its own

center of mass. This motion can be characterized by the rotational transformation, R_ m, between

X_m, Ycm, Zcm and X_, Y_, Z_. Since, X_m, Y_m, Zcm and XI, YI, ZI are aligned, R_ m describes the

orientation of the spacecraft with respect to the inertial frame also. R_ "_ is generally obtained

by using Euler rotations. Other rigid body degrees of freedom arise from the interconnections

between different bodies of the spacecraft, each of which can be described by the transformation

of the type, _m2R!('j-l), between any two consecutive body frames in the chain. Oij represents the

origin of the ij-th body frame and its position with respect to i(j - 1)-th body frame is defined by

vector 5ij. Also, each 5ij is the vector sum of gij and _ij, where -aij and _/j represent rigid body

and elastic displacements of ij-th frame, respectively. First, the equations for position, velocity,

and acceleration will be obtained for a representative particle mass dm in the ij-th body, i.e.,

the j-th body in the i-th branch. Referring to Figure 6, the position vector of a particle mass

dm in ij-th body, in the local reference frame (i.e, ij-th frame), is given by

--i j -d"a --i j
?_drn = ddm + Pdm (26)



_J --sj
whereddm and Pdm represent rigid and elastic displacements of mass dm in ij-th frame. The

position vector of dra with respect to i(j - 1)-th frame is then given by

_i(j-1) _ sij q- /_i(j-1)=ijdm -- "_ij tL drn (27)

Finally, the position vector of dm in the inertial frame of reference is given by

I - Rlik-_ik llft .--rijTdm = gem + Rcmrc + + _ijuam
\ k=l

where RIj is given by

R[j RI RcmRc .. R!(j-l)

(28)

(29)

The velocity of the particle mass dm is given by taking the time derivative of equation (28).

i d__(k=s-' d i
d

gdm = --rdm = r_m + -_(R_mg_) + dt y]_ Rtiksik) + -_ (Rijgdm)
k--I

k=j- 1 k=j- 1
-- I "-

k=, k=l

ifl =:ij nI --ij
"-_ _,,ijUdrn + l_ijUdm (30)

Now using properties 2 and 3 (Section 2.5) of the cross product operator, noting that Rc_ = la,

and using the notation (23), the time derivatives in equation (30) can be evaluated as follows.

s_ =a_ + )_ = w_a_ + _--_(I)_k0_k = --a_w¢ + y_ ¢_kqCk (31)
k k

where, _ = Ek O_kq_k, O_k is the mode shape matrix of the central body, and qca are the

generalized coordinates. Similarly,

sij = -50 + -fiij = wijaij + Y_ ¢ijkglijk = -aijwij + __, _ijJlip, (32)
k k

where, )ij = _k Cp,jkqijk and Oijk, qok being the k-th mode shape matrix and generalized coordi-

nate for ij-th body, respectively.

= R_'_Ril "'" rtij sij + R_ Ril "'" n 0 sis

,_,i(j-x)_
+ "'" + RCcTMRcl"''rtij sij

_ni(j--l)-- \-- (Ril ni_(j--l)-- \--= (R_mR_I ...ai j 8ij)od c + R_cm c ...1.ti j 8ij}Odil

10



cm c F?i(j-2)[Ri(j-1)=..)'_i j_- ''' "_ 1_ c 1_il "''.,¢.i(j_l)\._,qj o_

CTr_ C
(R c Ri 1 ni(j-1)--ij \-- cm c .. R!(.J -1.... _;j Udm)_c + Re (Ril --. )u_m)@l

i_i(j-2) { i2_i(j-1)--ij .,--
+ "'"-t- R{mR_cmRCl'"l_i(j_UtJ_ij Udm)a.¢ij

= R +pdm)

RI ( Jd m+E= ¢_ijkqijk)
k

=ij

_ijk qijk

k

Substituting equations (33) thru (35) in equation (30) we get

(33)

(34)

(35)

%_dm = - + ¢ kq k
k

j

-- _ijaijwij] + E u ,z.__
j=l j=l k

J
C_Tl C cm _ .

"1- E(Rc Ri I ._./_i(j-1)-_. ,_:--:"'''_ij °t.I]_'Jc -_- t_c [E(fi_ijSi3)] "_i1 AV "'"

j j=l

j
cm r_--_ hi(z-l)-- Dcm {122i(j-1)-_ .Vc;..

+ Ri(:-I)t2__,ttij Sij)'_iz _- ... _- l _i(j--1) t,x _"ij

j=z

loi(j-1)g-;ij "_., cm c+ (RT'R_ .._j _._i_ + Re (R_I "_qJ-_)=_J _=• . . lrij t_dmJ_Jil

cm c Di(j-2)( Di(j-1)_iJ
"Jc "'" "_- R c Ril "'' z_i(j_l)k_cij dm)'_ij

:ij
_Ij ddm_ij -r RIj E din.-- (_ ijk qijk

k

Simplifying and regrouping equation (36) gives

Udrn Ucm -_- [--ac -_ E(I_c 1_il _ni(j-1)- -_ "-"-_i(j-1)_ij• .._j sij) + (R_mR_ )]_e___ cm c . . . i_ij Ud m

J

J _ .

[__ cm = cm _ cm C--_ --.1_il ail -lc 12{c (E(fi{ijsij))-_- fi{c (Rijt_dm)]C°'l _-''"+
j:l

j
cm _--- Ct?l,

"nt-[--Riz aiz -_- Ri(z_I)(E hi(z-l)_ , cm {ni(z-1)--ij \1-_ltij 8ij) + Ri(___)_ij ?2dm)J iz

j=z

cm'-- ncm /hi(j-I)-- \ Dcm [ loi(j- '
+ .-. + [-R_j a_¢ + t%(¢_l)tr_ ¢ s,_) + *_,U-_)t_¢ _)_:_)]_

J

-- ij dm U -_ E (_ckOck "_- E Rijcm (E _ijkOijk) JC Rlij E (Y_ijdm "kqo

k j=l k k

(36)

(37)

11



Equation (37) can be rewritten in a compact form as

--tr,_ns _ot = N---_"Vdm _- Vdm + Vdm (38)

where --trans and ---rotvain Vdm are the contributions to the velocity vector of particle mass dm from the

translational and rotational-plus-flexible motion of the spacecraft, respectively, and

-t,-,._ - (39)Vdm _ Vcr n

-rot =Vdm N p (40)

N = [I3 N] (41)

= {Vcm p}T (42)

In equations (39)-(42), N is 3 x n matrix, n is the total number of rotational-plus-flexible degrees

of freedom, and p is n x 1 vector of generalized velocities corresponding to these degrees of freedom.

Matrix N has the following form:

N = [Nr,_d NIu,] (43)

where, Nrig_d is 3 x 3(/m+ 1) matrix related to the rigid degrees of freedom and Nfux is 3 x s(lm+ 1)

matrix related to the flexible degrees of freedom. For the sake of notational simplicity, and

without loss of generality, it is assumed that each chain structure has m bodies and that each

body has s flexible degrees of freedom. Then vector ib has the form

= [_'c, _11 ,''" _'lrn ,''" "_ij,''" _'--lm, Ocl,''" Ocs, qlll, " " " qijk,''" 4lrnsl T (44)

The matrices Nrigid and Nfux are given as follows.

where

Ur,, e = Nd (45)

N_ -a_ + __,(R_ R n _,-,i(i-O- , "-'-piO-1)wi.i- _ _ "..rtis sij) + (R_mR_, (46).... "_ij "drnl

J

Nil crn _ cra _ cm c --i j= [-Rn an + R_ (y_(R0si3)) + R¢ (RijUd_)] (47)
j=l

12



j
Niz : cm "- cm[-R_z aiz + R,/z_l)(}--_ nqz-1)_ , n_ ._.i(z-1)_q ,,.nij sij) + l_i(z_l)(tq3 Udm)J

j=z

Nij cm: Dcm [Di(j-1)'-_.._ D cm [Di(j-1)'zr, iJ _l= [-Rid aij + -"_i(j-l)t-",ij °_3J '[- "('i(j-1)k.'cij '_dm]l

(48)

(49)

(50)

and

Nfte._ = I_-_'ck, "", R i_j"" ]___,_ijk R iI Z_idjr_/ (51)

r

kk k k 1

Having obtained the expression for velocity, the kinetic energy for the particle mass dm is given

by

dZdm = 2-ffTm Vdmdm (52)

Then the kinetic energy for the entire spacecraft can be obtained by integrating equation (52),

i.e.,

1

where, # is the mass density, gdm is as given in equation (37), and f_ denotes the spatial domain

of integration. Substituting equation (52) into equation (53), we get

1 [
vZ - 2

1
= 2 fa _T(-_T-_))#df _ (54)

Equation (54) can be rewritten in a compact form as

= _-TM(p)_ (55)T

where, M(p) is the mass-inertia matrix of the system and is given by

M(p) =/a (-NT-K)I_df_ (56)

M(_) is symmetric and positive definite matrix.

In practice, for the most spacecraft applications, a control engineer needs to know only

rotational dynamic model of the spacecraft since the translational motion of the spacecraft, as

13



a whole,is controlledonly periodically by separatethruster-jets wheneverreboostingof orbit is

necessary. In such a case, the kinetic energy of the spacecraft is given by

Trot = 2 Ju vd" vdmtta_t

1 ]a(ND) wND#da
W--- --

2
1

= -2/a pT(NTN)D#df_

and the inertia matrix is then given by

(57)

t

M(p) = Ja (NTN)#da (5S)

M(p) is also symmetric and positive definite matrix. Using (57) and (58), T,.ot can be rewritten

in compact form as

Trot = IpT M(p)p (59)
z

3.4 Potential Energy

The potential energy of the system could be due to many sources, such as elastic displacement,

thermal deformation, etc. The deformations due to thermal effects is not considered here, how-

ever, it can be easily included in the formulation if desired. Thus, it is assumed that the potential

energy has contribution only from the elastic strain energy. Also, it assumed that the materials

under consideration are isotropic in nature and that they obey Hook's law.

For the isotropic materials obeying Hook's law, the strain energy differential is given as

5V = _ aT _ed_l (60)

which can be rewritten as

6V =/a _d_

where • is the strain energy density and has the form

(61)

= O'xx(.xx + O'yy(.yy "_ . . . "-}- O'yz(.y z (62)

14



Now, for materialsobeyingHook's law, following equalityholds.

O"T -- E£ (63)

The strain-displacement relation is given by

_= Du (64)

where, u is the general displacement vector and D is the differential operator defined by relations

]
eij= -_ ui5 + uj,, + uik']j {i,j = 1,2,3} (65)

k=l

The vector u can be expressed in terms of modal coordinates as

u = q)q (66)

Now, from equation (64)

Substituting in 51/, get

5e = DOSq (67)

5V = f_ (:rTScd_

= j_ cTEDO6qdfl

= j_ qT(Do) TEDo6qdfl

= qT_(DO)TEDOdflSq

= qTKSq (68)

where, K is called the stiffness matrix of the system and is given by

K = £(DO)TEDOdFt

The potential energy of the system is, then given by

V = _qTKq

(69)

(70)

15



3.5 Equations of Motion

As previously stated, without the loss of generality, only the rotational motion of the spacecraft

is considered in deriving the dynamic model of the spacecraft. If necessary, the translational

motion can be easily included in the equations of motion by using appropriate kinetic energy

term in the Lagrangian , i.e., by using T instead of Trot and using p instead of p as a displacement

vector.

Using equations (59) and (70) the Lagrangian of the system is defined as

L = T,.ot- V (71)

For the purpose of convenience, L can be rewritten in the indicial notation as

1

L = T_o, - V = -_ _. Mj)& - V(q)
%3

(72)

The Euler-Lagrange equations for the system can then be derived from

d_ _ Opk - Fk (73)

where, Fk are generalized forces from non-conservative force field. Evaluating the derivatives,

and

OL

Obk E Mkj_j
J

J J

OMkj . .

3 _,3

Also

OL 1 OMit ..
Opk - 2_ -b--_-p_pp_ -

Thus the Euler-Lagrange equations can be written

OV

Opk

j i,j Opi

1 OMit,.. OV
7, _-d-- 1PIP3 - Fk
z opk Opk

k = 1_ .... ,n

(74)

(75)

(76)

(77)
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By interchangingthe order of summationand taking advantageof symmetry,it canbe seenthat

__ OMkj 1- OMkj OMki}D,D j
_,J{--_,}p_pjp, = _{--_p + _ (78)

Hence

The terms

1 . OMkj OMki OMij }_biibj (79)OMkj 10Mij }PiPj = _ -_'!.--_p i + Opj{ _ 2 opk _,_ Opk

1. OMkj OMki OMii

c,j_ = -_t_ + Opj Op_} (so)

are known as Christoffel symbols. Note that, for each fixed k, we have Cijk = Ciki. Also

OV

Opk - Kkjqj (81)

Finally, then Euler-Lagrange equations of motion can be written as

___,Mkjfb + _-_.CijkDi[gj + DkjD+ Iikjpj = Fk, (k= 1,2,...,n) (82)
j i,j

where D is the inherent structural damping matrix and Dp is the vector of nonconservative

forces.

In the equations (82), there are four types of terms. The first type of terms involve the

second type derivative of the generalized coordinates. The second are quadratic terms in the

first derivatives of p, where the coefficients may depend on p. These terms can be further

classified into two types. Terms involving a product of the type p2 are called centrifugal terms,

while those involving a product of the type DiPj where i _ j are called Coriolis terms. The third

type are the ones which involve only the first derivative of the generalized coordinates and they

are the dissipative forces due to the inherent damping. The fourth type of terms involve only p

but not its derivatives. These arise from differentiating the potential energy. In the matrix-vector

notation, the equations (82) are written in a compact form as

M(p)f_ + C(p,p)p + Dp + Kp = F (83)

The k,j-th element of the matrix C(p,p) is defined as

Ckj

n

i=1

10Mkj OMk_ OM_j
= _ -2{ _ + cOpj Opk }ibi (84)

i=1
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Now, an important property of systemswhoseequationsof motion aregiven by (83), is derived

next.

Theorem.- The matrix S(p, p) = M(p) - 2C(p, [9) is skew symmetric.

Proof.- The kj-th component of the time derivative of the inertia matrix, M(p) is given by the

chain rule as

Therefore, the kj-th component of S = 3:/- 2C is given by

i----1

i=1

OMk aM, j.l

(85)

Since the inertia matrix is symmetric, i.e., Mij = Mii, it follows from (85) by interchanging the

indices k and j that

Sik = -Ski

This completes the proof.

3.6 Conclusions

A generic mathematical model for a class of multibody flexible spacecraft was developed. A

judicious choice of coordinate systems was made which allowed decoupling of translational and

rotational dynamics of the spacecraft. This is a useful way of modeling spacecraft dynamics

since, depending on the application, one can choose to use only rotational, or translational,

or a complete rotational-plus-translational dynamic model of the spacecraft. Although only

rotational model was presented, the Lagrangian formulation was done for a complete rotational-

plus-translational dynamic model of the spacecraft. In the derivation of potential energy, an

assumption was made that potential energy terms are only due to elastic deformations; however,

as stated previously, the potential energy contributions from any other sources of deformations,

such as thermal deformations, can also be included in the same way as elastic deformations.

The model developed can be used for multibody spacecraft such as space-based manipulators,

18



multipayload platforms, satelliteswith flexible appendages,and manymore. With minor modi-

fications, the modelcanbeusedevenfor terrestrial robots. In summary,most spacecraftmodels

canbe obtained asspecialcasesof the modeldevelopedin this paper.
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